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a b s t r a c t

This present paper proposes new investigations aiming at: (i) studying the effect on oxygen diffusion
coefficients of the presence in clean water of some compounds usually encountered in biological media
and (ii) quantifying their consequences on liquid-side mass transfer coefficients. The oxygen diffusion
coefficients D were firstly measured in various synthetic liquid phases containing either salt (NaCl), sugar
(glucose) or surfactant (sodium laurylsulphate). When compared to clean water, noticeable reductions of
D were observed; the variation of D with the compound concentration C was modelled and found depen-
dent on the nature of the compound added. In a second time, using the same liquid media, experiments
on a train of bubbles rising in a quiescent liquid phase were carried out to determine the associated
liquid-side mass transfer coefficients (kL). For all cases, as for diffusion coefficients, a decrease of kL with
increasing C was clearly observed whatever the aqueous solutions. These findings firstly showed that,
even if the properties of clean water (density, viscosity, surface tension) were not significantly changed
by the addition of salts (NaCl), the liquid-side mass transfer coefficients could be, all the same, modified.

For the aqueous solutions of glucose, the reduction of kL with diffusion coefficients D was well correlated,
and mainly due to the change in viscosity with concentration. For surfactants, the hydrodynamic condi-
tions (i.e. bubble Reynolds number) being almost kept constant for all concentrations, only the change
in oxygen diffusion coefficients was thus responsible for the decrease of kL. The present study clearly
confirmed the need to complete and/or account for the database related to oxygen diffusion coefficients
in complex media, this condition being imperatively required to describe and to model appropriately the

phen
gas–liquid mass transfer

. Introduction

The gas-liquid mass transfer, with the gas as dispersed phase,
lays a key role in bioreactors (i.e. urban wastewater biologi-
al treatment, fermentation) as controlling the oxygen available
or the microorganism metabolism. The performances of the bio-

ogical process, as well as the associated energy consumption,
re thus directly linked to the efficiency of the latter transfer
henomenon. Bioprocesses involve liquid media (culture broths)
hich are far more complex than a pure air–water system, as

∗ Corresponding author at: Université de Toulouse, INSA, Laboratoire d’Ingénierie
es Systèmes Biologiques et des Procédés (LISBP), 135 Avenue de Rangueil, 31077
oulouse, France. Tel.: +33 0 5 61 55 97 89; fax: +33 0 5 61 55 97 60.

E-mail address: Gilles.Hebrard@insa-toulouse.fr (G. Hébrard).

385-8947/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2010.09.040
omena.
© 2010 Elsevier B.V. All rights reserved.

containing many species (salts, hydrocarbons, alcohols, organic
nutrients, surfactants. . .). The research devoted to gas–liquid mass
transfer in bioprocess has been intensive for many years [1] but,
paradoxically, the question is still approached in terms of vol-
umetric mass transfer coefficients (kLa). The physico-chemical
properties of this complex environment and their impact on the
mass transfer rates are thus considered together, namely by intro-
ducing the ˛-factor. This scaling factor is defined by [2]:

˛ = (kLa)process water

(kLa)clean water
(1)
The ˛-factor remains widely used to account for process condi-
tions when sizing aeration systems. The limit of such an approach
is that the volumetric mass transfer coefficient is the global result
of both contributions: the resistance to mass transport in the
liquid side (kL) and the interfacial area (a). The properties of the

dx.doi.org/10.1016/j.cej.2010.09.040
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:Gilles.Hebrard@insa-toulouse.fr
dx.doi.org/10.1016/j.cej.2010.09.040
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Nomenclature

a interfacial area (L−1)
C concentrations of salt/sugar/surfactant compound

in clean water (M L−3)
C∗

L dissolved oxygen concentration at saturation in the
liquid phase (M L−3)

CMC critical micelle concentration of the anionic surfac-
tant (M L−3)

D oxygen diffusion coefficient in the liquid phase
under test (L2 T−1)

kLa volumetric gas–liquid mass transfer coefficient
(T−1)

kL liquid-side mass transfer coefficient (L T−1)
N rotation speed of the magnetic agitator (T−1)
U∗

i
interfacial momentum transfer velocity (L T−1)

T temperature (K)
HL height of liquid (L)
UB bubble velocity (L)
VL volume of liquid (L3)
M molar mass (L)
f frequency (T−1)
m mass (M)
dB bubble diameter (L)
Q flow rate (L3 T−1)

Greek letters
� viscosity (M L−1 T−1)
� density (M L−3)
�L tension force (M T−2)

Dimensionless number
ReB bubble Reynolds number ReB = ((�L · UB · dB)/� L)
Sc Schmidt number Sc =(� L/(�L · D))
Sh Sherwood t number Sh = (kL · dB/D)

Abbreviation
CAS chemical abstracts service
CMC critical micelle concentration
std mean standard deviation defined as∑ ∣ ∣
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faces, and bubble break-up), and liquid–film resistance (modelling
(1/N) i=1,N((∣Xexp − Xtheo
∣)/Xexp)

iquid phase may affect differently the mass transfer rates and
he mechanisms of the physical processes involving bubbles (bub-
le formation, coalescence and break-up). So, due to its empirical
ature, the ˛-factor does not enable the impact of the liquid
edium properties on the performances of aeration neither to

e fully understood nor to be predicted. This point was already
ighlighted by Zlokarnik [3] who studied the sorption character-

stics of slot injectors and their dependency on the coalescence
ehaviour of the system (addition of salts and/or solids, such as
ellulose, activated carbon). He clearly demonstrated that the coa-
escence behaviour of a system could not be described by means
f a material-parameter alone, and that the enhancement factor
˛) depended on the interaction of material and process-related
arameters and on the type of the gas dispersing device. Hence,
e concluded “there is no physical justification for the so-called
˛-factor” which is still widely used in waste-water treatment
nd is regarded as a material parameter”. Recently, Fyferling et al.

4] have compared, for concentrated microbial cultures (40–80 g
f biomass dry mass per litre), the mass transfer coefficients
btained in biological media (culture broth or supernatant min-
ral media), and also in coalescing and non-coalescing mineral
ering Journal 165 (2010) 758–768 759

media (composed of the main salts of the culture medium). These
authors have observed that, even if the hold-up in the culture
broth and in the corresponding supernatant matches the non-
coalescing mineral medium, the kLa values calculated online (gas
balance method) are, for a given dissipated power (ranged from 1 to
40 kW m−3), 4–8 times lower than the ones determined in the non-
coalescing mineral medium. These findings have been explained
using the three enhancement factors proposed by Sundararajan
and Ju [5], relating to: (i) the changes of the chemical medium
properties by the cell activity, (ii) the presence of solid particles,
and (iii) the mass transfer enhancement by the reaction. However,
no accurate quantification or modelling of each contribution was
investigated.

More academic researches have been carried out on the impact
of trace amounts of surfactants on bubble hydrodynamics (size,
shape, rise velocity, drag coefficient) and on gas–liquid mass trans-
fer. They have converged towards the idea that surface-active
components induce two opposite effects: (i) on the one side, delay-
ing the coalescence of gas bubbles and thus making the gas–liquid
interfacial area larger, (ii) and on the other side, reducing the distur-
bance in the bulk fluid by resisting the interface motion, and thus
making the resistance to mass transfer larger and liquid-side mass
transfer coefficients smaller. Generally, these effects are taken into
account [6–8]:

- by introducing the stagnant cap model (the adsorbed surfactants
molecules are assumed to be dragged towards the rear of the bub-
ble by adjacent liquid, a surface coverage ratio by active molecules
is then defined),

- and/or by modifying the slip condition at the bubble surface
(the surface of bubbles will be partially mobile or fully immobile
depending on the concentration of active species),

- and/or by considering two liquid-side mass transfer coefficients
(one for the clean front of the bubble, the other for the stagnant
cap) whose contributions are weighted depending on the degree
of coverage of the bubble surface.

Other authors [9,10] suggested that the action of surfactants
would induce also an additional resistance in the liquid layers sur-
rounding the bubbles, namely a change in diffusion coefficients.
A gas transfer reduction of 30–70% of clean water values in sur-
factant solutions was observed by Rosso et al. [11]: according to
them, by accumulating at the interface, surfactants lower the sur-
face tension, reduce the interfacial renewal and the diffusion of
gas into the liquid. Hébrard et al. [12] experimentally correlated, in
clean water and in water contaminated by surfactants, the vari-
ations of liquid-side mass transfer coefficients kL (for a train of
bubbles) with changes of oxygen diffusion coefficients (an exper-
imental device was developed to measure them). They pointed
out an important issue, namely the need to determine the “true”
diffusion coefficients of oxygen in multi-component solutions for
an accurate modelling of the elementary mechanisms occurring
in mass transfer phenomena; indeed, the oxygen diffusion coef-
ficients encountered in the available literature are mainly defined
for “clean” or mono-component liquid phase [13,14]. Very recently,
Martin et al. [15] studied, from a theoretical point of view, the
effect of surface tension and contaminants (salts) on mass transfer
rates. The originality of this paper was to integrate the contribu-
tion of contaminants simultaneously into specific contact areas
(using a population balance with proper theoretical closures for
bubble coalescence efficiency, for partially and fully immobile sur-
as function of the coverage of the surface of the bubbles). They
found that the degree of bubble surface coverage did not only affect
bubble coalescence but also their break-up, that the ion strength
defined bubble stability and critical Weber number, and that the
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ass transfer rates were function of the surface coverage by the
lectrolytes.

In keeping with this scientific context and following the work of
ébrard et al. [12], the present paper proposes new experimental

nvestigations, in which the effect of the presence in clean water of
ome compounds usually encountered in biological media (i.e. salt,
ugar, surfactant) is analyzed. The true oxygen diffusion coefficients
namely the ones measured in the liquid media under test) will be
rstly determined. Then, the impact of the active species on the

iquid-side mass transfer coefficients associated with a train of cali-
rated bubbles will be determined, enabling thus some conclusions
o be drawn.

. Materials and methods

.1. Gas and liquid phases

Compressed air and nitrogen from laboratory lines were the
as phases here used. Both particle-retention and activated-carbon
ltering were used to avoid any unwanted contamination (such
s solid particles or organic substances). Clean water was pre-
ared by means of ion exchanger and activated-carbon filtering.
ote that, at 20 ◦C, the conductivity of this clean water was
lmost 0.1–0.2 �S cm−1 (WTW® Conductivity Meter LF538), the
otal organic carbon 0.2 ppm (Shimadzu® TOC-VCSH analyzer) and
he pH 7.3 (WTW® Microprocessor pH Meter pH539).

To prepare synthetic liquid phases, the clean water previously
escribed was used and combined with three types of compounds:
salt (NaCl), a sugar (glucose), or an anionic surfactant (sodium

aurylsulphate). They were selected as commonly encountered in
iological media. The surfactant here used (CAS 68891-38-3, Sido-
re Sinnova®) was fully characterised in [9], in particular the critical
icelle concentration (1.9 g L−1) and various adsorption character-

stics. Different concentrations of these compounds were tested:

from 1.6 to 100 g L−1 for NaCl solutions (58 g mol−1 in molar
mass),
from 0.05 to 100 g L−1 for glucose solutions (180 g mol−1 in molar
mass),
from 0.05 to 1.9 g L−1 for surfactant solutions (382 g mol−1 in
molar mass).

Note that, in addition to the precautions taken in the process
teps for producing the gas phase and clean water, a great care was
aken for the cleaning procedure of vessels between experiments. In
articular, several rinse cycles were systematically carried out, the
lean inside surfaces of vessel were not touched with fingerprint,
nd the clean reactor was close to the air (due to dust contamina-
ion).

For each solution, the density (�L), the dynamic viscosity (�L)
nd the static surface tension (�L) were measured respectively by
eans of a pycnometer (�L ± 0.2 kg m−3), the viscometer RM180

heomat Rheometric Scientific® (�L ± 10−3 mPa s) and the GBX®

S tensiometer (�L ± 0.5 mN m). The latter physico-chemical prop-
rties are reported in Table 1 for each synthetic liquid phase. These
easurements firstly show that salt and surfactant do not modify

he viscosity whereas there is a noticeable rise in viscosity with the
oncentrations in glucose (until 1.26 mPa s at C = 100 g L−1). Con-
erning density, their variations with concentration never exceed
% when compared to water; except for C = 100 g L−1, where they

re slightly higher (+6.8% for salt and +3.8% for glucose).

Taking account for experimental uncertainties, the surface ten-
ions of sugar solutions do not differ from the one of clean
ater (�L = 72.8 mN m−1), the most concentrated solution excepted

�L = 65.4 mN m−1). In salt solutions, they are slightly higher than in
ering Journal 165 (2010) 758–768

clean water, reaching 76.1 mN m−1 for the highest concentration.
This phenomenon often exists in presence of inorganic substances
(salts of mineral acids, other electrolytes and ionic solutions), and is
caused by the fact these molecules are repelled from the interface
where they adsorb negatively [16]. On the contrary, the addition
of surfactants to clean water strongly lowers the surface tensions
(�L = 39.7–69.8 mN m−1 [12]). It is interesting to note that, for this
surfactant, the characteristic time for reaching adsorption equilib-
rium at the gas–liquid interface is about 200 ms (as reported by
[17]). It was significantly smaller than:

- the mean residence times (HL/UB) of the bubbles generated (see
Section 2.3 and Table 4), which order of magnitude is 900 ms,

- the time characteristic for gas–liquid mass transfer (1/kLa), which
order of magnitude is above 60 min for the experiments in the
double-wall vessel (Section 2.2) and varies between 300 and 600 s
for the experiments involving the bubble’ train (Section 2.3).

Hence, it can be reasonably assumed that the adsorption equi-
librium of the surfactant molecules at the gas–liquid interface is
reached in the experiments run (justifying thus to consider “static”
surface tensions rather dynamic surface tension). For the same rea-
son (i.e. the time-scale domain), the diffusion coefficients measured
becomes time-independent parameters.

2.2. Experimental set-up for measuring oxygen diffusion
coefficients (free-interface device)

As presented in [12], the determination of oxygen diffusion coef-
ficients was based on measurements of volumetric mass transfer
coefficients (kLa) occurring at a free gas–liquid interface under con-
trolled hydrodynamics conditions. For that, a specific experimental
facility was designed (Fig. 1), consisting in a double-wall glass ves-
sel, tightly closed, filled with a known height of liquid (0.035 m).
Bulk agitation of liquid was ensured by a magnetic agitator rotat-
ing at a very small speed (100 rpm) so as to maintain a constant flat
surface of the gas–liquid interface whatever the experiments. The
temperature of the liquid phase was maintained at 20 ◦C. The exper-
iments were carried out batch wise with respect to the liquid- and
continuous to the gas phase. Gas was fed above the liquid surface
at a small gas flow rate (almost 2.8 mL s−1, i.e. 1.5 mm s−1) for hin-
dering any surface deformation and enabling a constant interfacial
shear stress to be imposed.

The volumetric mass transfer coefficient (kLa) was determined
by applying the well-known dynamic method (nitrogen flush-
ing, mass balance under unsteady-state condition). For that, an
Unisense® microprobe (type OX 25-4046) was used. In the present
case, the signal S of the polarographic probe (proportional to the
equilibrium oxygen partial pressure in the bulk of the measured
liquid) can be directly used for calculating kLa, instead of the dis-
solved oxygen concentration which requires the knowledge of the
oxygen solubility. Indeed, the volumetric mass transfer coefficient
(kLa) in the liquid medium is deduced from the slope of the curve
described by:

Ln
S∗ − S

S∗ − S0
= −kLa · t (2)

which is equivalent to the following if the oxygen solubility is
known:

ln
˛ · (S∗ − S)

∗ = ln
C∗ − C
∗ = −kLa · t (3)
˛ · (S − S0) C − C0

The duration of one experiment (i.e. one kLa measurement)
was above 60 min, and was thus negligible when compared to the
response time of the probe (0.5 s). Thanks to the hydrodynamics
conditions imposed (low rotation speed and gas flow rate), the
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Table 1
Properties of clean water and of the synthetic liquid media at 20 ◦C: surface tension (�L ± 0.5 mN m), viscosity (�L ± 10−3 mPa s), density (�L ± 0.2 kg m−3) and dissolved
oxygen concentration at saturation (C∗

L
±0.1 g L−1).

C (g L−1)a �L (mN m−1) �L (mPa s) �L (kg m−3) C∗
L

(×10−3 g L−1)

Clean water 0 72.8 1.003 996.8 9.09

Salt (NaCl)

1.6 (0.0138) 73.1 1.002 997.3 9.01
2.4 (0.0207) 73.2 997.9 8.96
3.2 (0.0276) 73.4 998.7 8.92
4 (0.0345) 73.6 999.2 8.88
6 (0.0517) 73.8 1000.7 8.77
32 (0.2750) 75.0 1018.9 7.52
100 (0.8621) 76.1 1064.8 5.13

Sugar (glucose)

0.05 72.1 1.016 996.1 9.09
5 71.4 1.112 996.3 9.07
10 71.0 1.144 1000.2 9.04
20 70.5 1.176 1003.9 9.00
50 68.3 1.216 1015.4 8.86
100 64.3 1.263 1034.5 8.64

Anionic surfactant [12]

0.05 69.8 1.003 996.2 9.09
0.2 60.5 1.003 995.9 9.09
1.9 40.7 1.003 996.1 9.09

i
d
t
t

k

t
a
m
i
t
i
s
S

F
m

10 39.7
Pure 33.0

a The ionic strength is put into brackets (mol L−1).

nterfacial area offered to mass transfer (a) could be reasonably
efined by the ratio of the liquid surface (horizontal section area of
he vessel) to the liquid volume (a = 28.57 m−1). Liquid-side mass
ransfer coefficients were then calculated as:

L = kL · a

a
(4)

As reported in [12], the hydrodynamics conditions occurring in
he present device (i.e. a gas small flow moving at a constant velocity
bove a slightly agitated liquid phase) provide that the gas–liquid
ass transfer is mainly controlled by the level of turbulence
mposed by the gas flow shearing the interface. In such conditions,
he liquid-side mass transfer coefficient (kL) depends on: (i) the
nterfacial momentum transfer velocity, U∗

i
, which remains con-

tant for similar phase properties, and on (ii) the Schmidt number,
c. Consequently, the following expression was found by Hébrard

ig. 1. Experimental set-up used for measuring oxygen diffusion coefficients: (1) doubl
ometer, (5) thermo-regulation, (6) magnetic agitator, (7) gas flowmeter, (8) nitrogen su
1.003 1000.0 9.09
35 1050.0 9.09

et al. [12]:

kL

U∗
i

· Sc0.5 = C1 (5)

This is the general form of correlations or models related
to absorption coefficients. The exponent of the Schmidt number
depends on the nature of interfaces: it is equal to 1/2 for free sur-
face [18] or completely mobile surface of bubbles [19,20], and to
2/3 for rigid/contaminated bubbles [21]. Considering C2 = C1 · U∗

i
,

this induces:

( )2 ( )2
D = �L

�L
· kL

C1 · U∗
i

= �L

�L
· kL

C2
(6)

The latter constant was experimentally determined in clean
water at 20 ◦C, and validated for various temperatures and rotations

e-wall vessel, (2) oxygen micro-probe Unisense® , (3) acquisition system, (4) ther-
pply, (9) air supply, (10) three-way valve.
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ig. 2. (a) Illustration of a train of bubbles generated. (b) Experimental set-up used
f bubbles: (1) pressure gauge, (2) gas flow meter, (3) electronic manometer, (4) sq
hemical solution vessel, (9) oxygen microsensor, (10) acquistion system (camera,

peeds [12], leading to:

2 = 2.22 · 10−4 ± 0.21 · 10−4 m s−1 (7)

This value of C2 was assumed to be conserved for the synthetic
iquid media under test. Note that this was verified as, the density
f all liquid media under test did not differ from the one of water
Table 1), implying thus no changes in the interfacial momentum
ransfer velocity U∗

i
[12]:

∗
i =

√
1/2 · �G · fi · (UG − UL)2

�L
(8)

Lastly, knowing the liquid mass transfer coefficient kL (kLa mea-
urements and Eq. (4)) and the liquid phase properties (Table 1), the
iffusion coefficient of oxygen (D) could be easily deduced from Eqs.
6) and (7). The associated experimental uncertainty was estimated
o 15%.

All the experiments were run between three and six times.

.3. Experimental set-up for measuring the liquid-side mass
ransfer coefficients associated with a chain of bubbles (bubble
olumn device)

The same device than Painmanakul et al. [9] was here used
o generate a train of calibrated monodisperse bubbles (Fig. 2a).
xperiments were carried out in a glass bubble column (0.043 m in
iameter, 0.40 m in height, height of liquid HL = 0.23 m), submerged

n a water bath regulated in temperature (Fig. 2b). For all runs, the
ir sparger was an elastic membrane punctured with a single ori-
ce and the gas flow rate was equal to 1.2 mL s−1 with sugar and
alt and to 1.5 mL s−1 with surfactant. Nitrogen was flushed to fully
emove dissolved oxygen in the synthetic liquid media, and also to
aintain the oxygen concentration of the gas phase above the free

urface null.
The volumetric mass transfer coefficients (kLa) associated with

he train of formed bubbles was measured using the sulphite static
ethod [9]. For a given aeration time, the sodium sulphite (Na2SO3)

as reacted with the oxygen transferred into the liquid phase by

he generated bubbles. The remaining sulphite was determined
y the iodometric method (oxidation of sulphites by iodine, and
itration of excess iodine by sodium thiosulphate). As the initial
xygen concentration was kept at zero (nitrogen flushing), kLa can
easuring the liquid-side mass transfer coefficients associated with the latter train
sectional tank, (5) membrane sparger, (6) bubble column, (7) soap film meter, (8)
ter), (11) nitrogen pressure gauge, (12) agitation system.

be calculated from the following mass balance:

kLa = (1/2)(MO2 /MNa2SO3 ) · mS

taeration · VL · C∗
L

(9)

where MO2 represents the molar mass of oxygen, MNa2SO3 the molar
mass of sodium sulphite, mS the mass of Na2SO3 reacting with oxy-
gen during the aeration phase (taeration), VL the liquid volume of the
glass column.

The dissolved oxygen concentration at saturation, C∗
L , was either

measured or calculated for each liquid media. For water and salt
solutions, C∗

L was directly measured using the polarographic probe
UNISENSE, by first adjusting the correction factor proposed by
UNISENSE® (e.g. the one linking the electrical signal given by the
probe S to the oxygen concentration present in the liquid) as a
function of the concentration in salts. For glucose solutions, C∗

L
was firstly measured using an in situ chemical titration (i.e. the
Winkler test [22,23]). As this method was difficult to implement
with accuracy (in particular with respect to the artefact induced
by atmospheric oxygen), the data reported by Slininger et al. [24]
were used, they showed that a decrease of 5% in oxygen solubil-
ity took place when the glucose concentrations varied from 0 to
100 g L−1. For surfactant solutions, it was assumed that C∗

L remained
equal to those of clean water, considering the low concentration of
surfactants present in water. All the values of C∗

L are reported in
Table 1.

In this sulphite static method, the aeration time (2 min) and the
initial sulphite mass (almost 60 mg) were optimised for ensuring
a quantity of remaining sulphites sufficient for accurate titration
while minimising the initial sulphite introduced. It was verified that
the presence of sulphites changed neither the liquid properties nor
the bubble characteristics.

During the aeration period, the interfacial area (a) was deduced
from image acquisition and analysis [9,10], according to:

a = NB × SB

VTotal
=

(
fB · HL

UB

)
× SB

A · HL + (fB(HL/UB)) · VB
(10)

where NB represents the number of bubbles, UB the terminal rising
bubble velocity, A and HL the cross-sectional area and the height of
the glass column respectively. The image post-treatment assumed

that the bubbles had an ellipsoidal shape (length l, height h, eccen-
tricity e = h/l), the bubble diameter (dB), volume (VB) and surface
area (SB) were thus deduced from:

dB = (l2 · h)
1/3

(11)
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Table 2
Oxygen diffusion coefficient in clean water and in synthetic liquid media (at 20 ◦C,
�D/D ≈ 15%).

C (g L−1) C (mol L−1) D (×10−9 m2 s−1)

Clean water 0 1.98

Salt (NaCl) 1.6 2.76 × 10−2 1.99
2.4 4.14 × 10−2 1.81
3.2 5.52 × 10−2 1.43
4 6.90 × 10−2 1.53
6 1.03 × 10−1 1.44
32 5.52 × 10−1 1.46
100 1.72 1.16

Sugar (glucose) 0.05 2.8 × 10−4 2.12
5 2.78 × 10−2 2.13
10 5.56 × 10−2 1.97
20 1.11 × 10−1 1.74
50 2.78 × 10−1 1.67
100 5.56 × 10−1 1.39

Anionic surfactant
[12]

0.05 1.3 × 10−4 1.68

0.2 5.3 × 10−4 1.38

- Holtzapple and Eubank [29] compared three models of diffusion
of oxygen through aqueous salt solutions, based either on mole
fraction, chemical potential or oxygen activity as the driving force.
They demonstrated that the three models did not differ signif-
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ig. 3. Time-variation of dissolved oxygen concentration during the implementa-
ion of the sulphite static method for measuring kLa.

B = � · d3
B

6
(12)

B = 2� ·
[

l2

4
+

(
l2

4
× 1

2 · e
ln

(
1 + e

1 − e

))]
(13)

The bubble frequency (fB) was calculated using two methods: (i)
he ratio of air flow rate (soap flowmeter) to bubble volume and (ii)
he direct counting of bubbles on the image sequence (time step of
.5 ms). A good agreement between both methods was observed.

At last, the ratio of the coefficient kLa (sulphite static method)
y the interfacial area a (image analysis) provided the liquid-side
ass transfer coefficient kL. The error induced by this method was

pproximately 20%, the iodometric titration being responsible of
he main part of this experimental uncertainty.

It is important to note that the sulphite static method was
uccessfully applied for all the media tested, except for the most
oncentrated solutions of glucose (20 ≤ C ≤ 100 g L−1). Under these
onditions, the dissolved oxygen concentration did not remain at
ero after air injection, but increased and reached a plateau cor-
esponding to several mg L−1, whatever the aeration time (this is
llustrated in Fig. 3). This phenomenon was due to a bisulphite com-
ination of the glucose molecules, as reported in the literature for
igh concentrations of glucose [25]. This “reaction” was reversible

nsofar as, if no air was introduced, the quantity of the sulphite
ons remaining in solution after a given period of time were found
by titration) equal to the quantity initially introduced. When this
isulphitic combination occurred, the sulphite ions, initially intro-
uced in slight excess, were no more available for consuming all
he oxygen transferred, involving thus an increase of the oxygen
issolved concentration. The sulphite static method gave then erro-
eous values of kLa, the dissolved oxygen concentration being no
ore equal to zero as stated in Eq. (9). Consequently, for the highest

oncentrations of glucose, it was chosen to implement the dynamic
ethod (using the Unisense® microprobe) instead of the sulphite
ethod, even if all the conditions required were not fully verified in

he present bubble column device, in particular the perfectly mixed
ehaviour of the liquid phase.

. Results and discussion

.1. Influence of the substances contained in clean water on
xygen diffusion coefficients (D)
The oxygen diffusion coefficients obtained in synthetic liquid
edia are reported in Table 2. Firstly, the oxygen diffusion coeffi-

ient measured in clean water (at 20 ◦C, Dwater = 1.98 × 10−9 m2 s−1)
s in agreement with the mean value of 2 × 10−9 m2 s−1 encoun-
ered in literature [13,14,26,27].
1.9 5.00 × 10−3 0.76
10 2.63 × 10−2 0.70
Pure solution 0.55

Fig. 4 compares, for various salt (NaCl) concentrations, the oxy-
gen diffusion coefficients obtained in the present study and the
following ones reported in the literature:

- Hung and Dinius [28] measured diffusivities of oxygen dissolved
in aqueous solutions of various sodium-based salts by means of
a diaphragm cell technique,
1.110.90.80.7

Fig. 4. (a) Comparison between the oxygen diffusion coefficients in aqueous solu-
tions of salt measured and the ones reported in the literature. (b) Oxygen diffusion
coefficient versus inverse of viscosity for aqueous solutions of glucose.
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Table 3
Empirical coefficients relating to Eq. (15) for describing the variation of D/Dwater with
concentration.

(D/Dwater) = 1 − k(17) · Cn(17) (Eq. (17))

k(17) n(17) std (%)

m
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D

w
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d
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w
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Salt (NaCl) 0.179 0.180 6.5
Sugar (glucose) 0.0046 0.907 3.4
Surfactant 0.584 0.047 13.6

icantly in their predictions, except for extremely high oxygen
partial pressures.

As shown in Fig. 4, our data are underestimated and overesti-
ated when compared to the ones of [29] and [28] respectively.

his discrepancy is not surprising as, at present, no generally
ccepted relationships for predicting the diffusivities of gases dis-
olved in electrolyte solutions exists, leading to various attempts
f correlations, such as:

= Dwater · (1 − k ·
√

C) (14)

= Dwater(1 − A · C) (15)

D

Dwater
− 1 = B

1 + r
· C (16)

here k is an empirical constant [28], A an empirical constant [30],
the Jones and Dole viscosity coefficient and r a ratio involving the

ctivation energies [31]. In the present study, these latter correla-
ions do not give satisfactory results when fitting experimental data
least-square technique). The application of Eq. (14) to the present
ata leads to a constant k equal to 0.058 and 0.44 (std of 36%) when
ass and molar concentrations are used respectively. This latter

alue is in good agreement with the one of 0.452 reported by [28].
owever, we observe that the present relative change of D/Dwater

n salt solutions is better described (std of 6.5%) by:

= Dwater · (1 − k(17).C
n(17) ) (17)

here k(17) and n(17) are empirical coefficients reported in Table 3
ith C expressed in g L−1.

Table 2 and Fig. 5 compare the variations of oxygen diffusion
oefficients with concentrations for each type of synthetic media.
s shown in Fig. 4 for salt, the oxygen diffusion coefficients in aque-
us solutions of glucose and surfactant are noticeably smallest than

n clean water, the lowest ones being obtained with surfactants.
t is interesting to observe that, depending on the nature of the
ctive substance, the rate of change of D/Dwater with concentrations
iffers.
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ig. 5. Ratio between oxygen diffusion coefficients in synthetic liquid media and
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urfactant) (T = 20 ◦C). The dotted and continuous line curves are issued from the
odelling using Eq. (15) and the coefficients reported in Table 3.
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For sugar solutions, the reduction of oxygen diffusion coef-
ficients reaches 30% for the highest concentrations (100 g L−1),
leading to a minimal value of 1.39 × 10−9 m2 s−1. This latter value
is fully relevant when compared to the results of Van Stroe-Biezen
et al. [32] who measured, using an electrochemical method, the
diffusion coefficient of oxygen in glucose solutions; indeed, these
authors found a reduction in diffusivity of 26% when the glucose
concentration varied from 0 to 100 g L−1 in their fermentation
media. The decrease in viscosity with increasing concentrations of
glucose (Table 1) is mainly responsible for such change in diffusion
coefficients. This is illustrated in Fig. 4b where the usual depen-
dence of D with the inverse of viscosity is verified, as predicted
by the Stokes–Einstein equation and the correlation of Wilke and
Chang (1954) [13]. The rate of change of D/Dwater with concentra-
tions in glucose is well correlated (std of 3.4%) by the same type of
relationship than for salt (Eq. (17)): reported in Table 3, the empiri-
cal coefficients k(17) and n(17) are found smaller and higher than the
ones calculated for salt and surfactant solutions respectively. Note
that a further modelling would be also possible by drawing an anal-
ogy with the Sechenov equation commonly used to describe the
effect of electrolytes on the solubility of gases in aqueous solutions
[33], namely by:

log
(

D

Dwater

)
= −k(18) · C (18)

where the constant k(18) would be thus analogous to the Sechenov
constant involved when considering solubility in Eq. (18). The
Sechenov constant depends on the nature of gas phase, tempera-
ture and species in solution, and then can be predicted by using
ion-specific constants for salting-out and ionic strength of ions.
Schumpe and Deckwer [34] extended this model of solubility when
organic substances (like methanol, ethanol, propanol or glycerol)
were present, and found Sechenov constants ranged between 0.1
and 0.4 (using C in mol L−1). When Eq. (18) is applied for predicting
the diffusion coefficients in glucose solutions, k(18) is found equal
to 1.6 × 10−3 (using C in g L−1) and to 0.28 (using C in mol L−1)
with a std of almost 12%. The latter value has the same order of
magnitude than the Sechenov constants found by [34] for solubil-
ity. This comparison would suggest that, concerning the influence
of sugar, a parallel between both solubility and diffusion coeffi-
cient of oxygen would be drawn: other types of organic substances
should be tested to definitively confirm this behaviour. Note that
the modelling using Eq. (18): (i) leads to higher standard deviations
(approximate fitting) than the one using Eq. (17) and (ii) is surpris-
ingly not adapted for the synthetic media containing NaCl (high
std).

In presence of surfactants, the diffusion of oxygen does not
involve exactly the same mechanisms that the ones occurring in
aqueous solutions of salt or glucose, due to the dynamics of sur-
factant adsorption/desorption at the gas–liquid interface and to
the associated partial or full surface contamination; the term of
apparent or effective diffusivity would be thus rigorously more
appropriated. Nevertheless, the comparison between the time
scales of the different phenomena involved (see Section 2.1) sug-
gests that, in the present experiments, the adsorption equilibrium
of the surfactant molecules at the gas–liquid interface is reached.
This would induce that the diffusion coefficients measured are
time-independent. Fig. 5 shows that, in presence of surfactants,
the decrease of oxygen diffusion coefficients with concentration is
strongly pronounced: for concentrations above the critical micel-
lar concentration (1.9 g L−1), D becomes almost constant around

0.7 × 10−9 m2 s−1, namely about 0.4 times the value for clean water.
Note that the oxygen diffusion coefficient in a pure solution of sur-
factant (Fig. 5) is equal to 0.55 × 10−9 m2 s−1 (data from [12]), and
has thus the same order of magnitude than the ones measured
for C > CMC. Such result implies that, even if it is not sure that
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Table 4
Results dealing with experiments carried out on a train of bubbles in clean water and in synthetic liquid media (at 20 ◦C): bubble diameter, terminal rising bubble velocity,
bubble Reynolds number, liquid-side mass transfer coefficient, Schmidt number and Sherwood number.

C (g L−1) dB (mm) fB (Hz) UB (m s−1) ReB kL (10−4 m s−1) Sc Sh

Clean water 0 3.9 40.3 0.29 1118 4.6 507 894

Salt (NaCl) 1.6 4.2 34 0.29 1187 4.9 505 1028
2.4 4.0 35.6 0.30 1183 5.5 555 1203
3.2 3.9 41.7 0.27 1039 4.5 703 1227
4 3.5 55.5 0.29 1001 4.1 657 933
6 3.7 44.6 0.29 1080 4.7 698 1221

32 3.6 50.9 0.30 1089 4.4 703 1126
100 3.1 79.0 0.29 964 3.6 810 956

Sugar (Glucose) 0.05 4.1 39.0 0.29 1146 4.6 481 887
5 3.9 40.3 0.29 1003 3.8 523 682

10 3.8 43.6 0.29 958 3.5 581 673
20 3.4 59.9 0.29 817 2.6 674 501
50 3.3 66.6 0.30 806 2.5 718 481

100 3.2 69.0 0.28 733 2.2 881 500

0.22
0.22
0.22

t
o
a
t
c
a

w

H
e
m
c
f
m
m
n
c
d
c
c
t
a
a

a
v
w
o
c
(
o
s

3
m

3

p
u
m
R

Anionic surfactant 0.05 5.16 22.7
0.2 5.29 20.3
1.9 5.17 22

he bulk solution is really homogeneous when C < CMC, the notion
f (apparent/effective) diffusion is transposable within a thickness
round the gas–liquid interface defined by one or several surfac-
ant mono-layers. The variation of D with surfactant concentration
an be satisfactorily modelled either using Eq. (17) (see Table 3) or
ccording to a power law:

D

Dwater
= k(19) · Cn(19) (19)

ith k(19) = 0.512 and n(19) = −0.15 (std of 6%).
It is interesting to face all the previous results with the work of

o and Ju [35] who highlighted a similar behaviour when measured
ffective oxygen diffusion coefficients in various fermentation
edia (Saccharomyces cerevisiae, Escherichia coli and Penicillium

hrysogenum). Whatever the culture media, a linear decrease of D
or increasing cell volume fractions was systematically observed,

ainly explained by the spatial hindering effect of cells on the
otion of diffusing oxygen molecules. To get some orders of mag-

itude, some results obtained by [35] are here reminded: for S.
erevisiae at 116 g dry cells/L D = 1.57 × 10−9 m2 s−1, for E. coli at 55 g
ry cells/L D = 1.76 × 10−9 m2 s−1 and for P. chrysogenum at 37 g dry
ells/L D = 1.03 × 10−9 m2 s−1. In the present work, the mechanisms
ontrolling the reduction of oxygen diffusion coefficients are cer-
ainly different, as rather linked to ionic strength, steric, viscosity
nd/or molecule adsorption effects, but their consequences on D
re comparable.

To conclude, all these findings illustrate that the kind of the
ctive substances has a major effect, at a given concentration, on the
alue of oxygen diffusion coefficients, but also on its rate of change
ith respect to clean water. To quantify these tendencies, attempts

f modelling have been performed using various (semi)-empirical
orrelations issued from literature; in particular, the use of Eq.
17) has enabled to highlight the strongest impact of surfactant
n D/Dwater when compared to glucose or salt (n(17)surfactant < n(17)

alt < n(17) glucose, Table 3).

.2. Influence of the substances contained in water on liquid-side
ass transfer coefficients (kL)

.2.1. Characteristics of the bubbles generated

The experiments on a train of bubbles rising in a quiescent liquid

hase were run in the same synthetic liquid media than the ones
sed for measuring oxygen diffusion coefficients. In Table 4, the
easured bubble diameter, frequency, terminal rising velocity and

eynolds number are firstly reported for each liquid media.
1102 2.9 598 877
1129 2.1 728 792
1130 1.7 1322 1120

For aqueous solutions of salt and sugar, the image analysis has
revealed that the bubble diameters remain equal to the ones mea-
sured in clean water (dB = 3.9 ± 0.3 mm), apart from the highest
concentrations (e.g. C = 100 g L−1 for salt and C > 20 g L−1 for glucose)
where a change appears (3.1 < dB < 3.4 mm) due to the changes in
surface tension and/or viscosity (see Table 1). Almost the same ten-
dency is observed for bubble frequencies (fB) and terminal rising
velocities (UB). Note that the surface tensions of salt media slightly
higher than in water (Table 1) have no major effect on bubble diam-
eter, but induce a rise of bubble frequencies (from 40 to 79 s−1).
At last, the synthetic liquid media containing salts do not modify
significantly the bubble Reynolds number (ReB = 1103 ± 86) when
compared to clean water, even if, for the most concentrated solu-
tion, ReB falls down to 964. On the contrary, the bubble Reynolds
numbers associated with aqueous solutions of glucose decrease
progressively with concentrations (from 1146 to 733), as a direct
consequence of the rise in viscosity (Table 1).

The data dealing with surfactants reported in Table 4 have
been extracted from [10]. They show that, whatever the concen-
trations, the contamination by anionic surfactants induces bubbles
of constant diameters (dB = 5.2 ± 0.1 mm) and constant frequencies
(fB = 21.6 ± 1.2 s−1). Note that, if these bubble sizes are greater than
those obtained in clean water and in aqueous solutions of salt and
glucose, it is only because an higher gas flow rate was operated
(QG = 1.5 mL s−1) instead of 1.2 mL s−1 (data reported from [10]).
Nevertheless, the bubble Reynolds numbers in presence of surfac-
tants have finally the same order of magnitude than in others cases
(ReB = 1120 ± 16).

3.2.2. Liquid-side mass transfer coefficients
Table 4 reports, for each aqueous solution of salt, sugar or surfac-

tant, the liquid-side mass transfer coefficients kL measured for the
train of rising bubbles. It clearly illustrates that, whatever its nature,
the presence of the active substance in water noticeably affects the
mass transfer coefficient when compared to clean water, and that,
at a given molar concentration, the strongest and smallest impacts
on kL are induced by the presence of surfactants and salt respec-
tively. Fig. 6, in which the ratio between liquid-side mass transfer
coefficients in synthetic liquid media and in clean water (kL/kL water)

as a function of the concentrations in salt, sugar or surfactant are
reported, confirms the latter tendencies.

For glucose, a major reduction in kL is induced: 18% at C = 5 g L−1,
24% at C = 10 g L−1 and 53% at C = 100 g L−1. This variation can be
successfully described by the same type of relationships than the
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ig. 6. Ratio between liquid-side mass transfer coefficients in synthetic liquid media
nd in clean water versus the concentration of the compound introduced (salt, sugar
r surfactant) (T = 20 ◦C).

nes used for diffusion coefficients (Eqs. (15) and (17)), namely:

kL

kL water
= 1 − k(20).C

n(20) (20)

r,

kL

kL,water
= k(21)C

n(21) (21)

here k(20), n(20), k(21) and n(21), are empirical coefficients reported
n Table 5. Note that for aqueous solutions of glucose: (i) the coef-
cients k(20) and n(20) differ from the ones found for describing
he rate of change of D/Dwater (see Table 3), (ii) the fitting with
espect to experimental data is better with Eq. (20) than with Eq.
21) (smaller std), (iii) the Sechenov-type relationship used for dif-
usion coefficients (Eq. (18)) is not at all adapted for mass transfer
oefficients.

For salt solutions, the rate of change in mass transfer coefficients
ith respect to clean water is less pronounced than for glucose, but

till exists: at 100 g L−1, kL/kL water = 0.79 against 0.47 for glucose.
t is interesting to observe that for C ≤ 2.4 g L−1, higher kL than in

ater can be distinguished (these results are reproducible); as this
eviation from water is at the same order of magnitude than the
xperimental uncertainties (20%), some caution should be taken for
nalysis. Nevertheless, this kind of phenomenon, e.g. an increase
f kL, has been already observed, for example at low concentra-
ions of short-chain surfactant molecules for carbon dioxide–water
bsorption process [36] or in presence of ethanol in a gas–liquid
eshumidifier [37]. The latter enhancement of mass transfer is usu-
lly attributed by the workers to the induced Marangoni effect,
amely to the generation of interfacial turbulence caused by sur-

ace tension gradients, and producing an increase in the renewal
rocess of the liquid elements and thus a rise in the driving force
orresponding to the absorption process. Deeper investigations will
e required in the future to verify this assumption (i.e. the increase

f mass transfer by Marangoni effect) in the case of salt solutions.

Like for glucose, the type of modelling used in Eq. (20) is well
ransposable (i.e. with a std of 3%) to describe the rate of change of
L/kL water for salt concentrations higher than 2.4 g L−1. The coeffi-
ients k(20) and n(20) determined (Table 5) differ here also from the

able 5
mpirical coefficients relating to Eqs. (18) and (19) for describing the variation of kL/kL wa

(kL/kL,water) = 1 − k(20)Cn(20) (Eq. (20))

k(20) n(20)

Salt (NaCl) 1.34 × 10−4 1.599
Sugar (glucose) 0.155 0.266
Surfactant 0.584 0.047
D (m2
.s

-1
)

Fig. 7. Liquid-side mass transfer coefficients versus oxygen diffusion coefficients
(T = 20 ◦C).

ones found for describing the rate of change of D/Dwater. Note that
neither Eq. (21) nor the relationships like Eq. (14) are adapted for
salt media (high std).

Concerning the surfactant solutions, the impact is more pro-
nounced than for the other active substances: kL is here diminished
from 37% at C = 0.05 g L−1, from 55% at C = 0.2 g L−1 and from 64%
at C = 1.9 g L−1. Contrary to salt and glucose solutions, the rate of
change of kL/kL water with surfactant concentration can be perfectly
modelled (std of 11%) using Eq. (20) and the same coefficients k(12)
and n(12) than for diffusion coefficients. An alternative is to use Eq.
(21) (see Table 5).

Finally, from these findings, the key role played by the nature
of the active substance on the resistance to mass transport in the
liquid side is clearly confirmed. Moreover, for a given substance,
it has been demonstrated that the relationships modelling the
rates of change of kL/kL water and of D/Dwater with concentration
have remarkably the same form (Eq. (20)) with different empir-
ical coefficients (except for surfactants). Therefore, it becomes
essential to pay a particular attention on the establishment of the
potential relationships between the ratios (Dmedium/Dwater) and (kL

medium/kL water).

3.3. Relationship between liquid-side mass transfer coefficients
and oxygen diffusion coefficients

In Fig. 7 are reported, for each synthetic liquid medium, the
variations of liquid-side mass transfer coefficients kL (obtained on
a train of bubbles) with oxygen diffusion coefficients D. As refer-
ence, the case of clean water is plotted as a red triangle symbol:
kL water = 4.6 × 10−4 m s−1 is in agreement with literature data [2].
Whatever the active substance, the simultaneous decrease of kL

with D is clearly highlighted, and these even when experimental
uncertainties are integrated (±15% for D and ±20% for kL). It is
important to note that, for all the aqueous solutions of salt (except

for the highest concentrated), the properties of clean water (�L,
�L, �L) are conserved as well as the global hydrodynamics con-
ditions controlling the bubbles generated (ReB). The decrease in
the resistance to mass transport in the liquid side (kL) can be thus
attributed to the change in oxygen diffusion coefficients, namely

ter with concentration.

(kL/kL,water) = k(21)Cn(21) (Eq. (21))

std (%) k(21) n(21) std (%)

2.9 – – –
5.1 0.826 −0.098 16

11 0.386 −0.15 5
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o the rise of the Schmidt number Sc (Table 3). With the solutions
ontaining glucose, the case is the same, but coupled with the effect
f viscosity. Even if change, the change in viscosity should induce
ome modifications in the local hydrodynamics in the vicinity of the
nterface, the liquid side mass transfer coefficient kL is also affected
y a modification of diffusion coefficient.

The contamination of clean water by surfactant induces some
hanges in surface tension (progressive coverage of bubble surface
y surfactant molecules) when compared with water. However, the
ubble Reynolds numbers remaining almost constant for all con-
entrations, this is, in this case also, the change of oxygen diffusion
oefficients which is responsible for the reduction in liquid-side
ass transfer coefficients.
At this stage, the establishment of a fine model describing the

ariation of kL with D is premature, as: (i) the experimental uncer-
ainties on both parameters are not sufficiently small and (ii) the
umber and the type of active substance to introduce in clean water
hould be extended to cover a more representative domain. Nev-
rtheless, the latter results point out an important issue, namely
hat the rate of change of kL with D is strongly correlated with the
ature of the compound present in water. In the future, the ability
o complete the database related to oxygen diffusion coefficients
n complex media will thus constitute a key step for understanding
nd modelling properly the gas–liquid mass transfer phenom-
na.

. Conclusions

Specific experiments were run to study the influence on the liq-
id phase composition on oxygen diffusion coefficients D. A focus
as made on the addition in clean water of three types of sub-

tances commonly encountered in biological media: a salt (NaCl), a
ugar (glucose) and an anionic surfactant. The experimental device
nd methodology developed by Hébrard et al. [12] were used for
easuring D. For all cases, oxygen diffusion coefficients were low-

red when compared to clean water, and, depending on the nature
f the substance added, this rate of change of D with concentration
iffer. To quantify these tendencies, attempts of modelling were
erformed using various (semi)-empirical correlations issued from

iterature; in particular, the use of Eq. (17) enabled to highlight
he strongest impact of surfactant on D/Dwater when compared to
lucose or salt.

In a second time, experiments on a train of bubbles rising in a
uiescent liquid phase were carried out in the same synthetic liquid
edia, aiming at determining liquid-side mass transfer coefficients

Painmanakul et al. [9]). The image analysis technique showed
rstly that the hydrodynamic conditions controlling the bubbles
enerated (i.e. bubble Reynolds number) occurring in clean water
ere almost conserved, except for the most concentrated solution

f salt and glucose. Afterwards, the key role played by the nature
f the active substance on the resistance to mass transport in the
iquid side was clearly confirmed. For a given substance, it was
emonstrated that the relationships modelling the rates of change
f kL/kL water and of D/Dwater with concentration had remarkably the
ame form (Eq. (20)) with different empirical coefficients (except
or surfactants).

The present study clearly highlighted the need to complete the
atabase related to oxygen diffusion coefficients in complex media,
his condition being imperatively required to describe and to model
roperly the gas–liquid mass transfer phenomena.
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